Remotality and proximinality in normed linear spaces

Authors

Abstract:

In this paper, we consider the concepts farthest points and nearest points in normed linear spaces, We obtain a necessary and coecient conditions for proximinal, Chebyshev, remotal and uniquely remotal subsets in normed linear spaces. Also, we consider -remotality, -proximinality, coproximinality and co-remotality.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Proximinality and co-proximinality in metric linear spaces

As a counterpart to best approximation, the concept of best coapproximation was introduced in normed linear spaces by C. Franchetti and M. Furi in 1972. Subsequently, this study was taken up by many researchers. In this paper, we discuss some results on the existence and uniqueness of best approximation and best coapproximation when the underlying spaces are metric linear spaces. A new kind of ...

full text

Embedding normed linear spaces into $C(X)$

‎It is well known that every (real or complex) normed linear space $L$ is isometrically embeddable into $C(X)$ for some compact Hausdorff space $X$‎. ‎Here $X$ is the closed unit ball of $L^*$ (the set of all continuous scalar-valued linear mappings on $L$) endowed with the weak$^*$ topology‎, ‎which is compact by the Banach--Alaoglu theorem‎. ‎We prove that the compact Hausdorff space $X$ can ...

full text

Proximinality in Geodesic Spaces

Let X be a complete CAT(0) space with the geodesic extension property and Alexandrov curvature bounded below. It is shown that if C is a closed subset of X , then the set of points of X which have a unique nearest point in C is Gδ and of the second Baire category inX. If, in addition,C is bounded, then the set of points ofX which have a unique farthest point in C is dense in X. A proximity resu...

full text

Schwarz'S lemma in normed linear spaces.

In this paper we show that any Fréchet holomorphic function mapping the open unit ball of one normed linear space into the closed unit ball of another must be a linear mapping if the Fréchet derivative of the function at zero is a surjective isometry. From this fact we deduce a Banach-Stone theorem for operator algebras which generalizes that of R. V. Kadison.

full text

Inner Products in Normed Linear Spaces

Let T be any normed linear space [l, p. S3]. Then an inner product is defined in T if to each pair of elements x and y there is associated a real number (x, y) in such a way that (#, y) » (y, x), \\x\\ = (#, #), (x, y+z) = (#,y) + (x, 2), and (/#,y) = /(#, y) for all real numbers /and elements x and y. An inner product can be defined in T if and only if any two-dimensional subspace is equivalen...

full text

FUZZY REFLEXIVITY OF FELBIN'S TYPE FUZZY NORMED LINEAR SPACES AND FIXED POINT THEOREMS IN SUCH SPACES

An idea of fuzzy reexivity of Felbin's type fuzzy normed linear spaces is introduced and its properties are studied. Concept of fuzzy uniform normal structure is given and using the geometric properties of this concept xed point theorems are proved in fuzzy normed linear spaces.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 2

pages  73- 80

publication date 2017-05-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023